Exercise 3

Show that $(1+z)^{2}=1+2 z+z^{2}$.

Solution

In order to show that these functions are equal, we have to show that the real and imaginary parts of both are the same. Substitute $z=x+i y$ and simplify both sides.

$$
\begin{aligned}
(1+z)^{2} & =(1+x+i y)^{2} \\
& =(1+x)^{2}+2(1+x) i y+i^{2} y^{2} \\
& =(1+x)^{2}-y^{2}+2 i y(1+x)
\end{aligned}
$$

The real and imaginary parts of $(1+z)^{2}$ are $(1+x)^{2}-y^{2}$ and $2 y(1+x)$, respectively.

$$
\begin{aligned}
1+2 z+z^{2} & =1+2(x+i y)+(x+i y)^{2} \\
& =1+2 x+2 i y+x^{2}+2 i x y+i^{2} y^{2} \\
& =1+2 x+x^{2}-y^{2}+2 i y(1+x) \\
& =(1+x)^{2}-y^{2}+2 i y(1+x)
\end{aligned}
$$

The real and imaginary parts of $1+2 z+z^{2}$ are $(1+x)^{2}-y^{2}$ and $2 y(1+x)$, respectively. Therefore,

$$
(1+z)^{2}=1+2 z+z^{2} .
$$

