Exercise 3

Show that $(1+z)^2 = 1 + 2z + z^2$.

Solution

In order to show that these functions are equal, we have to show that the real and imaginary parts of both are the same. Substitute z = x + iy and simplify both sides.

$$(1+z)^2 = (1+x+iy)^2$$

= $(1+x)^2 + 2(1+x)iy + i^2y^2$
= $(1+x)^2 - y^2 + 2iy(1+x)$

The real and imaginary parts of $(1+z)^2$ are $(1+x)^2 - y^2$ and 2y(1+x), respectively.

$$1 + 2z + z^{2} = 1 + 2(x + iy) + (x + iy)^{2}$$

= 1 + 2x + 2iy + x² + 2ixy + i²y²
= 1 + 2x + x² - y² + 2iy(1 + x)
= (1 + x)^{2} - y^{2} + 2iy(1 + x)

The real and imaginary parts of $1 + 2z + z^2$ are $(1 + x)^2 - y^2$ and 2y(1 + x), respectively. Therefore,

$$(1+z)^2 = 1 + 2z + z^2.$$